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Abstract

This paper explores the Group Invariant Scattering Transform pro-
posed by Stéphane Mallat in 2012.[4] A scattering transform and
propagator is defined as a path-ordered product of non-linear non-
commuting operators, which are each the modulus of a wavelet
transform. The scattering transform is shown to be a translation
invariant operator on L2(Rd), which is also Lipschitz continuous
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transform since they allow for objects similar to each other also be
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to existing transformations. As such, the scattering transform has
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1. Background and Motivation

The Group Invariant Scattering is introduced and defined by Stéphen Mallat in 2012 as a
novel representation method.[4] The scattering transform is defined as translation-invariant
representations of L2(Rd) functions, which are Lipschitz-continuous to the action of diffeo-

morphisms. These representations preserve high-frequency information to discriminate different
types of signals. This is an improvement to the Fourier Transform which has instablities to
deformations at high-frequencies.

1.1 The Fourier Transform and its limitation

Definition 1.1. The Fourier Transform, f̂ (ω), of f (x) ∈ L2(Rd) is

f̂ (ω) =
∫

f (x)e−iωxdx, (1)

which is also denoted as F [ f (x)] = f̂ (ω).

Further,

Definition 1.2. Let Tc f (x) = f (x− c) denote the translation of f ∈ L2(Rd) by c ∈ Rd. Further,
Φ : L2(Rd)→ H, a Hilbert Space, is translation-invariant if

Φ(Tc f ) = Φ( f ) ∀ f ∈ L2(Rd) and c ∈ Rd. (2)

Which leads to,

Lemma 1.1. The Fourier Transform modulus, Φ = |F [ f (x)]|, is translation invariant.

Proof. For some translation, c ∈ Rd, F [Tc f (x)] = e−icω f̂ (ω) = T̂c f (ω). Thus,
|e−icω f̂ (ω)| = |T̂c f (ω)| = | f̂ (ω)|.

However, invariance to time-shifts is often not enough. Consider f (x) to be not just translated
but time-warped, f (x− τ(x)). It is now needed to define the following.

Definition 1.3. A differentiable function f : X → Ω, where X and Ω are manifolds, is a Dif-
feomorphism if f is a bijection, both one-to-one, injective, and onto, surjective, and its inverse,
f−1 : Ω→ X, is also differentiable.

Further,

Definition 1.4. The weak topology on C2 diffeomorphisms defines a distance between 1− τ and 1

over any compact subset Ω ⊂ Rd by

dΩ(1,1− τ) = sup
x∈Ω
|τ(x)|+ sup

x∈Ω
|∇τ(x)|+ sup

x∈Ω
|Hτ(x)|, (3)

where |τ(x)| is the euclidean norm in Rd, |∇τ(x)| the sup norm of the matrix ∇τ(x) and |Hτ(x)|
the sup norm of the Hessian tensor. Further, let ‖τ‖∞ , supx∈Rd |τ|.

A representation Φ( f ) is stable to deformations if its Euclidean norm,
∥∥∥Φ( f )−Φ(Tτ(x) f (x)

∥∥∥
is small when the deformation is small, where the deformation is measured by dΩ(1,1− τ). So
stability is achieved when the following is met.

1



An Exposition of the Scattering Transform • David Nahmias

Definition 1.5. A Translation-invariant operator Φ is Lipschitz continuous to the action of C2

diffeomorphisms if for any compact Ω ⊂ Rd there exists C ∈ Rd such that for all f ∈ L2(Rd)
supported in Ω and τ ∈ C2(Rd)∥∥∥Φ( f )−Φ(Tτ(x) f )

∥∥∥
H
≤ C ‖ f ‖ (‖∇τ‖∞ + ‖Hτ‖∞) , (4)

with (‖∇τ‖∞ + ‖Hτ‖∞) < 1, to ensure the deformation is invertable.

Note that the Lipschitz upper bound does not depend on the maximum translation amplitude
‖τ(X)‖∞ from (3) since Φ here is translation invariant. This Lipschitz continuity property
implies that time-warping deformations are locally linearized by Φ. Further, Lipschitz continuous
operators are differentiable almost everywhere. Thus, Φ( f )−Φ(Tτ(x) f ) can be approximated by a
linear operator if (‖∇τ‖∞ + ‖Hτ‖∞) is small. This leads to the following limitation of the Fourier
Transform.

Lemma 1.2. The Fourier Transform modulus, Φ = |F [ f (x)]|, is not stable to deformations and thus not
Lipschitz continuous.

Proof. By example, consider a small dialation τ(x) = εx, with 0 < ε� 1. So, (‖∇τ‖∞ + ‖Hτ‖∞)
here is equivalent to supx |∇τ(x)| = ε. Thus, the Lipschitz continuity condition is∥∥∥| f̂ | − |T̂τ(x) f |

∥∥∥ ≤ C ‖ f ‖ ε, (5)

where T̂τ(x) f = ̂f (x− εx) = ̂f ((1− ε)x) = f̂ (ω/(1−ε))
(1−ε)

.
This dialation shifts the frequency component at ω0 by ε|ω0|. Now considering a harmonic signal,

f (x) = g(t)∑n an cos (nζx) F−→ f̂ (ω) = ∑n
an
2 (ĝ(ω + nζ) + ĝ(ω− nζ). So, after time-warping by

τ(x), each partial ĝ(ω ± nζ) is translated by εnζ. Even with ε small, at higher frequencies εnζ

will be larger than the bandwidth of ĝ. Therefore, the Euclidean distance of | f̂ | and |T̂τ(x) f | does
not decrease proportionally to ε with large amplitude an at high frequencies. Thus the condition
cannot be satisfied for any C > 0 in (5).[1]

The frequency displacement from nζ to (1− ε)nζ, from Lemma 1.2, would have small impact
if the sinusoidal waves are replaced by localized functions whose Fourier Transforms have support
that are wider at higher frequencies. This can be achieved by a wavelet transform. So, with
this limitation on the Fourier Transform modulus, another modulus transform, utilizing wavelet
transforms, is presented.

2. The Scattering Transform

As discussed, high frequency instabilities to deformations can be avoided by grouping frequencies
into packets in Rd with a wavelet transform. However, a wavelet transform is traditionally
not translation invariant. So, a translation-invariant operator is constructed with a scattering
procedure along multiple paths, which preserves the Lipschitz stability of wavelets to the action
of diffeomorphisms. A scattering propagator is first defined as a path-ordered product of non-
linear and non-commuting operators, each of which computes the modulus of wavelet transform.
Further expanded, a Windowed Scattering Transform is a non-expansive operator that locally
integrates the scattering propagator output that also preserves translation invariance and Lipschitz
continuity.
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2.1 Wavelets and the Scattering Transform

Beginning with wavelets, a wavelet transform is constructed by dialating a wavelet ψ ∈ L2(Rd)
with a sequence {aj}j∈Z for a ≥ 1. Dilated wavelets are also rotated with elements, r, of finite
rotation group, G. So,

Definition 2.1. A mother wavelet ψ that is dilated by aj and rotated by r ∈ G is written as

ψaj ,r(x) = a−djψ(a−jr−1x). (6)

Where with normalized wavelets in L1(Rd), such that
∥∥ψajr

∥∥
1 = ‖ψ‖1,

F [ψaj ,r] = ψ̂aj ,r(ω) = ψ̂(ajrω). (7)

Without loss of generality, dyadic wavelets with a = 2 are considered. Further, for notation, let
λ = (2jr) ∈ 2Z × G, with |λ| = 2j.

Definition 2.2. A Scattering Transform is computed with wavelets that can be written as

ψ(x) = eiηxθ(x), (8)

where θ(x) is a low frequency window and F [θ(x)] = θ̂(ω) is a real function centered at ω = 0
with bandwidth of order π.

So, by the Fourier Transform, ψ̂(ω) = θ̂(ω − η). Thus, ψ̂(ω) is real and concentrated in a
frequency window of the same bandwidth of order π but centered at ω = η. After dilation and
rotation, ψ̂λ(ω) = θ̂(λω− η) covers a window centered at λ−1η with radius proportional to 2−j,
thus specifying the frequency localization and spread of ψ̂λ.

2.2 Littlewood-Paley: Wavelets and Condition

Now, as opposed to a standard wavelet bases, the following is considered.

Definition 2.3. A Littlewood-Paley wavelet transform is a redundant representation which computes
convolutions at all x ∈ Rd, without subsampling, such that

W[λ] f (x) = f ∗ ψλ(x) =
∫

f (u)ψλ(x− u)du, ∀x ∈ Rd, ∀λ ∈ 2Z × G. (9)

Where F [W[λ] f (x)] = f̂ (ω)ψ̂λ(ω) = f̂ (ω)ψ̂(λω). Note then that if f is real, that is f̂ (−ω) =
f̂ ∗(ω), and ψ̂(ω) is chosen to be real, then W[−λ] f = W[λ] f ∗. This implies that rotations r and
−r are equivalent and can thus consider rotations r ∈ G+ = G \ {−1,1}.
A wavelet with a finite scale, 2J , only retains wavelets of frequencies, subbands, satisfying
2j ≤ 2J . The lower frequencies not captured by these wavelets are provided by a lowpass filter,
φ, with spatial domain proportional to 2J , φ2J (x) = 2−dJφ(2−J x). The operator, AJ is defined as
AJ f = f ∗ φ2J . So,

Definition 2.4. If f is real, then WJ f = {AJ f , (W[λ] f )λ∈ΛJ} which is indexed by ΛJ = {λ = 2jr :
2j ≤ 2J , r ∈ G+}. If J = ∞ then (W[λ] f )λ∈Λ∞} with Λ∞ = 2Z × G+. If f is complex, then all
rotations, r ∈ G are considered.

The norm
∥∥WJ f

∥∥2
=
∥∥AJ f

∥∥2
+ ∑λ∈ΛJ

‖W[λ] f ‖2 = ‖ f ∗ φ2J‖2 + ∑λ∈ΛJ
‖ f ∗ ψλ‖2 and when

J = ∞, ‖W∞ f ‖2 = ∑λ∈Λ∞ ‖W[λ] f ‖2. So, WJ is a linear operator from L2(Rd) to a product space
generated by copies of L2(Rd). Further, WJ defines a frame characterized by the following.
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Lemma 2.1. Littlewood-Paley Condition: If for any J ∈ Z and for almost all ω ∈ Rd, ∃ε > 0 such that

1− ε ≤ |φ̂(2Jω)|2 + 1
2 ∑

j≤J
∑
r∈G
|ψ̂(2jrω)|2 ≤ 1, (10)

then WJ is a frame with bounds 1− ε and 1,

(1− ε) ‖ f ‖2 ≤
∥∥WJ f

∥∥2 ≤ ‖ f ‖2 , f ∈ L2(Rd) (11)

and further WJ is unitary and preserves the Euclidean norm if and only if ε = 0.

Assuming ψ̂ is real, ψ̂(0) =
∫

ψ(x)dx = 0 and thus the wavelet has at least one vanishing
moment. Further, assuming φ̂ is real and symmetric, |φ̂(rω)| = |φ̂(ω)|.
Through the wavelet transform integral, if f (x) is scaled and rotated by 2 j̃ r̃ ∈ 2Z × G, 2 j̃ r̃ ◦ f (x) =
f (2 j̃ r̃x), the wavelet transform is scaled and rotated in the following manner,

W[λ](2 j̃ r̃ ◦ f ) = 2 j̃ r̃ ◦W[2− j̃ r̃λ] f . (12)

2.3 A Path-Ordered Scattering Transform

Convolutions with wavelets define operators that are Lipschitz continuous under action diffeo-
morphisms, since wavelets are regular and localized functions. However, a wavelet transform is
not translation-invariant, where in particular W[λ] f = f ∗ ψλ translates when f is translated. A
scattering operator computes translation-invariant representations and coefficients that remain
stable under the action diffeomorphisms while also retaining high-frequency information.
Defining an operator U[λ] on L2(Rd), not necessarily linear but which commutes with translations,∫

U[λ] f (x)dx is translation invariant if finite. Further, W[λ] f = f ∗ψλ commutes with translations
but

∫
W[λ] f (x)dx = 0 since wavelets have zero mean, that is

∫
ψ(x)dx = 0.

So, to obtain such a non-zero invariant operator, U[λ] f = M[λ]W[λ] f , where M[λ] is a non-linear
demodulation that maps W[λ] f to a lower-frequency function that has a non-zero integral, enabling
informative average value to be extracted from each subband λ. Note that M[λ] must preserve
Lipschitz continuity to diffeormorphisms actions and for stability in L2(Rd) be non-expansive.
Further, M[λ] needs to be a pointwise operator on f and preserve norm, that is ‖M[λ] f ‖ = ‖ f ‖
for all f ∈ L2(Rd) and thus |M[λ] f | = | f |. So, the most regular results are obtained through
defining the non-linearity M[λ] as the complex modulus, M[λ] f = | f |.

Definition 2.5. An ordered sequence p = (λ1, λ2, . . . , λm) with λk ∈ 2Z × G+ is defined as a path.
With an empty path, p = ∅. Define

U[λ] f = M[λ]W[λ] f = | f ∗ ψλ| for f ∈ L2(Rd). (13)

The Path-Ordered Scattering Transform is a path-ordered product of non-commutative operators,
U[λ] f , such that

U[p] = U[λm] · · ·U[λ2]U[λ1], (14)

with U[∅] = Id thus, U[∅] f = f .

The operator U[p] is well defined on L2(Rd) since ‖U[λ] f ‖ ≤ ‖ψλ‖1 ‖ f ‖ ∀λ ∈ 2Z × G+.
From this, the Path-Ordered Scattering Transform is a cascade of convolutions and modulus,

U[p] = || f ∗ ψλ1 | ∗ ψλ2 | · · · | ∗ ψλm |. (15)

Each U[λ] filters the frequency component in the subband covered by ψ̂λ and maps it to lower
frequencies with the modulus. Scaling and rotating path p by 2 j̃ r̃ ∈ 2Z × G is written as
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2 j̃ r̃p = (2 j̃ r̃λ1, 2 j̃ r̃λ2, . . . , 2 j̃ r̃λm). Further, combining path p with path p̃ is written as p + p̃ =
(λ1, λ2, . . . , λm, λ̃1, λ̃2, . . . , λ̃m). Thus, by (14),

U[p + p̃] = U[ p̃]U[p]. (16)

Definition 2.6. Let P∞ be the set of all finite paths. The Integral Scattering Transform of f ∈ L1(Rd)
is defined for any p ∈ P∞ by

S f (p) =
1

µp

∫
U[p] f (x)dx, (17)

where µp =
∫

U[p]δ(x)dx, a non-vanishing normalization factor resulting from further develop-
ment of a path measure.

So, a scattering is a translation-invariant operator that transforms f ∈ L1(Rd) into a function
with frequency path variable p. If p 6= ∅, then S f (p) is non-linear but preserves amplitude factor,
S(µ f )(p) = |µ|S f (p), ∀µ ∈ R.

Lemma 2.2. For some scaling and rotation 2 j̃ r̃ ∈ 2Z × G, the Integral Scattering Transform of a scaled
and rotated f is,

S(2 j̃ r̃ ◦ f )(p) = 2−dj̃S f (2− j̃ r̃p). (18)

Proof. If f is scaled and rotated by 2 j̃ r̃ ∈ 2Z × G, that is 2 j̃ r̃ ◦ f (x) = f (2 j̃ r̃x), then by (12),
U[λ](2 j̃ r̃ ◦ f ) = 2 j̃ r̃ ◦U[2− j̃ r̃λ] f . Through cascading, this yields U[p](2 j̃ r̃ ◦ f ) = 2 j̃ r̃ ◦U[2− j̃ r̃p] f ,
∀p ∈ P∞. Applying this to (17) shows that S(2 j̃ r̃ ◦ f )(p) = 2−dj̃S f (2− j̃ r̃p).

A direct extension of the Integral Scattering Transform in L2(Rd) is a limit of windowed
Scattering Transforms.

Definition 2.7. Let J ∈ Z and PJ be a set of finite paths p = (λ1, λ2, . . . , λm) with λk ∈ ΛJ and
thus 2jk ≤ 2J . A Windowed Scattering Transform is defined for all p ∈ PJ by

SJ [p] f (x) = U[p] f ∗ φ2J (x) =
∫

U[p] f (u)φ2J (x− u)du. (19)

The convolution with φ2J (x) = 2−dJφ(2−J x) localizes the scattering transform over spatial
domains of size proportional to 2J :

SJ [p] f (x) = || f ∗ ψλ1 | ∗ ψλ2 | · · · | ∗ ψλm | ∗ φ2J (x). (20)

This defines an infinite family of functions indexed by PJ , denoted by SJ [PJ ] , {SJ [p] f }p∈PJ .
Since φ(x) is continuous at 0, if f ∈ L1(Rd), then its Windowed Scattering Transform converges
poitwise when the scale 2J goes to ∞.

lim
J→∞

2dJSJ [p] f (x) = φ(0)
∫

U[p] f (u)du = φ(0)µpS(p), ∀x ∈ Rd (21)

where recall µp =
∫

U[p]δ(x)dx is a non-vanishing normalization factor. The limit and convergence
of the Windowed Scattering Transform is formalized in [4] by defining a measure over the path.

2.4 Scattering Propagation

Let SJ [Ω] , {SJ [p]}p∈Ω and U[Ω] , {U[p]}p∈Ω be the set of operators determined by path set Ω.
The Windowed Scattering Transform can be computed through the following procedure.
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Definition 2.8. A one-step propagator is

UJ f = {AJ f , (U[λ] f )λ∈ΛJ}, (22)

where recall AJ f = f ∗ φ2J and U[λ] f = | f ∗ ψλ|.
So after computing UJ f , UJ is again applied to each U[λ] f and recursively to each U[p] f .

Since U[λ]U[p] = U[λ + p] from (16) and AJU[p] = SJ [p] from (19),

UJU[p] f = {SJ [p] f , (U[p + λ] f )λ∈ΛJ}. (23)

Now let Λm
J be the set of paths of length m with Λ0

J = {∅}. Then,

UJU[Λm
J ] f = {SJ [Λm

J ] f , (U[Λm+1
J ] f )λ∈ΛJ}. (24)

So, since PJ =
⋃

m∈N Λm
J , the Windowed Scattering Transform of f , SJ [PJ ] f , is obtained from

f = U[∅] f by iteratively computing UJU[Λm
J ] fm=0→∞. This procedure can be seen in Figure 1.

Figure 1: A scattering propagator UJ applied to f computes each U[λ1] f = | f ∗ ψλ1 | and outputs S[∅] f = f ∗ φ2J .
Applying UJ to each U[λ1] f computes all U[λ1, λ2] f and outputs SJ [λ1] = U[λ1] ∗ φ2J . Applying
iteratively UJ to each U[p] f outputs SJ [p] f = U[p] f ∗ φ2J and computes the next path layer.[4]

Note that all results and definitions of the Path-Ordered Scattering Transform and Windowed
Scattering Transform are extendable to complex functions by also considering negative paths,
denoted as −p = (−λ1, λ2, . . . , λm). Where if f is real, W[−λ1] f = W[λ1] f ∗ ⇒ U[−λ1] f =
U[λ1] f ⇒ U[−p] f = U[p] f ⇒ SJ [−p] f = SJ [p] f .

3. Properties of The Windowed Scattering Transform

3.1 Norm Preservation of The Windowed Scattering Transform

To preserve stability in L2(Rd) operators, Φ, need to be non-expansive.

Lemma 3.1. The propagator UJ f = {AJ f , (W[λ] f )λ∈ΛJ} is non-expansive and preserves norm.

Proof. The wavelet transform WJ is unitary, by Lemma 2.1, and a modulus is non-expansive since
||a| − |b|| ≤ |a− b|, ∀(a, b) ∈ C2. So, for f , h ∈ R or f , h ∈ C,∥∥UJ f −UJh

∥∥2
=

∥∥AJ f − AJh
∥∥2

+ ∑λ∈ΛJ
‖|W[λ] f | − |W[λ]h|‖

≤
∥∥WJ f −WJh

∥∥2

≤ ‖ f − h‖2 . (25)
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Further, since WJ is unitary, with h = 0, UJ preserves the norm,
∥∥Uj f

∥∥ = ‖ f ‖.

So, for any path set Ω,∥∥SJ [Ω] f
∥∥2

= ∑
p∈Ω

∥∥SJ [p] f
∥∥2 and ‖U[Ω] f ‖2 = ∑

p∈Ω
‖U[p] f ‖2 . (26)

Therefore,

Theorem 3.2. The Windowed Scattering Transform is non-expansive,∥∥SJ [PJ ] f − SJ [PJ ]h
∥∥ ≤ ‖ f − h‖ , ∀( f , h) ∈ L2(Rd). (27)

Proof. UJ is non-expansive by Lemma 3.1. So,∥∥∥U[Λm
J ] f −U[Λm

J ]h
∥∥∥2
≥

∥∥∥UJU[Λm
J ] f −UJU[Λm

J ]h
∥∥∥2

=
∥∥∥SJ [Λm

J ] f − SJ [Λm
J ]h
∥∥∥2

+
∥∥∥U[Λm+1

J ] f −U[Λm+1
J ]h

∥∥∥2

=
∥∥SJ [PJ ] f − SJ [PJ ]h

∥∥2 , by (24) and scattering propagation. (28)

So summing over m = 0→ ∞,

∥∥SJ [PJ ] f − SJ [PJ ]h
∥∥2

= ∑∞
m=0

∥∥∥SJ [Λm
J ] f − SJ [Λm

J ]h
∥∥∥2

≤ ‖ f − h‖2 (29)

yielding the desired result.

The conditions for when the Windowed Scattering Transform preserves norm follow.

Theorem 3.3. A scattering wavelet, ψ, is admissible if ∃η ∈ Rd and 0 ≤ ρ ∈ L2(Rd), with |ρ̂(ω)| ≤
|φ̂(2ω)| and ρ̂(0) = 1, such that

Ψ̂(ω) = |ρ̂(ω− η)|2 −
∞

∑
k=1

k(1− |ρ̂(2−k(ω− η))|2) (30)

satisfies

inf
1≤|ω|≤2

∞

∑
j=−∞

∑
r∈G

Ψ̂(2−jr−1ω)|ψ̂(2−jr−1ω)|2 > 0. (31)

Further, if the wavelet, φ, satisfies the Littlewood-Paley Condition in Lemma 2.1, with ε = 0, and is
admissible, then ∀ f ∈ L2(Rd),

lim
m→∞

∥∥∥U[Λm
J ] f
∥∥∥2

= lim
m→∞

∞

∑
n≥m

∥∥∥SJ [Λn
J ] f
∥∥∥2

= 0 (32)

and ∥∥SJ [PJ ] f
∥∥ = ‖ f ‖ . (33)

The proof of this theorem shows that scattering transform propagates progressively energy
towards lower frequencies because of the demodulation effect of the modulus. Further, this fact
leads to a Lemma that is used in the proof of Theorem 3.3.
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Lemma 3.4. If the condition in Theorem 3.3 is satisfied and

‖ f ‖2
w =

∞

∑
j=0

∑
r∈G+

j
∥∥∥W[2jr] f

∥∥∥2
< ∞ (34)

then,
α

2

∥∥U[PJ ] f
∥∥2 ≤ max(J + 1, 1) ‖ f ‖2 + ‖ f ‖2

w , (35)

where α = inf1≤|ω|≤2 ∑∞
j=−∞ ∑r∈G Ψ̂(2−jr−1ω)|ψ̂(2−jr−1ω)|2, (31) from Theorem 3.3.

As a note, the class of functions where ‖ f ‖w < ∞ is called a logarithmic Sobolev class which
corresponds here to functions that have an average modulus of continuity in L2(Rd).

3.2 Translation Invariance of The Windowed Scattering Transform

The scattering distance is defined as
∥∥SJ [PJ ] f − SJ [PJ ]h

∥∥. It is non-increasing as J increases and
thus defines a limit distance that converges as J → ∞. So,

Lemma 3.5. For all ( f , h) ∈ L2(Rd)2 and J ∈ Z,∥∥SJ+1[PJ+1] f − SJ+1[PJ+1]h
∥∥ ≤ ∥∥SJ [PJ ] f − SJ [PJ ]h

∥∥ . (36)

Further, since SJ [PJ ] is non-expansive from Theorem 3.2, the limit metric is also non-expansive
and thus

lim
J→∞

∥∥SJ [PJ ] f − SJ [PJ ]h
∥∥ ≤ ‖ f − h‖ , ∀( f , h) ∈ L2(Rd)2. (37)

In addition, for admissible scattering wavelets, from Theorem 3.3,
∥∥SJ [PJ ] f

∥∥ = ‖ f ‖ and so
limJ→∞

∥∥SJ [PJ ] f
∥∥ = ‖ f ‖. To show the limit metric is translation invariant, the following prelimi-

nary results are needed.

Lemma 3.6. Schur’s Lemma: For any operator K f (x) =
∫

f (u)k(x, u)du, if∫
|k(x, u)|dx ≤ C and

∫
|k(x, u)|du ≤ C ⇒ ‖K‖ ≤ C, (38)

where ‖K‖ is the L2(Rd) norm of operator K.

Lemma 3.6 can be proved through application of a variation of the Cauchy-Schwartz Inequality
and Tonelli’s Theorem.[3] Further,

Lemma 3.7. There exists C such that for all τ ∈ C2(Rd) with ‖∇τ‖∞ ≤ 1/2,∥∥Tτ AJ f − AJ f
∥∥ ≤ C ‖ f ‖ 2−J ‖τ‖∞ . (39)

Lemma 3.7 is proved through the application of Lemma 3.6 on of the operator norm of
k J = Tτ AJ − AJ and on first-order Taylor expansions of |k J |.
With these results, it is proved that the limit metric of the Windowed Scattering Transform is
translation invariant.

Theorem 3.8. For all admissible scattering wavelets satisfying Theorem 3.3,

lim
J→∞

∥∥SJ [PJ ]Tc f − SJ [PJ ] f
∥∥ = 0, ∀ f ∈ L2(Rd) and ∀c ∈ Rd. (40)
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Proof. With SJ [PJ ]Tc = TcSJ [PJ ] and SJ [PJ ] f = AJU[PJ ] f ,∥∥SJ [PJ ]Tc f − SJ [PJ ] f
∥∥ =

∥∥Tc AJU[PJ ] f − AJU[PJ ] f
∥∥

≤
∥∥Tc AJ − AJ

∥∥ ∥∥U[PJ ] f
∥∥ , by Hölder’s Inequality. (41)

Now, applying Lemma 3.7 with τ = c, ‖∇τ‖∞ = |c| and∥∥Tτ AJ f − AJ f
∥∥ ≤ C ‖ f ‖ 2−J |c|. (42)

Applying (42) to (41) yields,∥∥SJ [PJ ]Tc f − SJ [PJ ] f
∥∥ ≤ C ‖ f ‖ 2−J |c|

∥∥U[PJ ] f
∥∥ . (43)

Since the conditions from Theorem 3.3 are assumed to be satisfied, from Lemma 3.4, for J > 1 and
‖ f ‖w < ∞, applying (35) to (43) obtains,

∥∥SJ [PJ ]Tc f − SJ [PJ ] f
∥∥ ≤ C2 ‖ f ‖2 2−2J |c|2

(
(J + 1) ‖ f ‖2 + ‖ f ‖2

w

) 2
α

(44)

Taking J → ∞,

lim
J→∞

C2 ‖ f ‖2 2−2J |c|2
(
(J + 1) ‖ f ‖2 + ‖ f ‖2

w

) 2
α
= 0. (45)

Thus, for ‖ f ‖w < ∞, limJ→∞
∥∥SJ [PJ ]Tc f − SJ [PJ ] f

∥∥ = 0.
In general though, for all f ∈ L2(Rd), consider that any such f ∈ L2(Rd) can be written as
a combination and limit of { fn}n∈N, where fn = f ∗ φ2n with φ2n(x) = 2−ndφ(2−nx). Further,
‖ fn‖w < ∞. So, with SJ [PJ ] non-expansive from Theorem 3.2, implying

∥∥SJ [PJ ] f − SJ [PJ ] fn
∥∥ ≤

‖ f − fn‖, and with Tc is unitary,∥∥SJ [PJ ] f
∥∥ ≤ ∥∥SJ [PJ ] fn

∥∥+ ‖ f − fn‖∥∥SJ [PJ ]Tc f
∥∥ ≤ ∥∥SJ [PJ ]Tc fn

∥∥+ ‖ f − fn‖
⇒
∥∥SJ [PJ ]Tc f − SJ [PJ ] f

∥∥ ≤ ∥∥SJ [PJ ]Tc fn − SJ [PJ ] fn
∥∥+ 2 ‖ f − fn‖ . (46)

Since φ ∈ L1(Rd) and φ̂(0) = 1, limn→∞ ‖ f − fn‖ = 0, ∀ f ∈ L2(Rd). Thus, as n→ ∞,

lim
J→∞

∥∥SJ [PJ ]Tc f − SJ [PJ ] f
∥∥ = 0, ∀ f ∈ L2(Rd), (47)

thus proving the theorem.

3.3 Lipschitz Continuity of The Windowed Scattering Transform

Finally coming to the Fourier Transform modulus’ limitation shown in Lemma 1.2, the Windowed
Scattering Transform is Lipschitz continuous under the action of diffeomorphisms. The diffeomor-
phism action on f ∈ L2(Rd) is Tτ(x) f (x) = f (x− τ(x)). The maximum increment of τ is written
as,

‖∆τ‖∞ , sup
(x,u)∈R2d

|τ(x)− τ(u)|. (48)

The following theorem determines the upper bound of
∥∥SJ [PJ ]Tτ f − SJ [PJ ] f

∥∥ as a function of the

scattering norm,
∥∥U[PJ ] f

∥∥
1 = ∑∞

m=0

∥∥∥U[Λm
J ] f
∥∥∥.
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Theorem 3.9. There exits C such that ∀ f ∈ L2(Rd) with
∥∥U[PJ ] f

∥∥
1 < ∞ and all τ ∈ C2(Rd) with

‖∇τ‖∞ ≤ 1/2 satisfy ∥∥SJ [PJ ]Tτ f − SJ [PJ ] f
∥∥ ≤ C

∥∥U[PJ ] f
∥∥

1 K(τ) (49)

with

K(τ) = 2−J ‖τ‖∞ + ‖∇τ‖∞

(
max{log

‖∆τ‖∞
‖∇τ‖∞

, 1}
)
+ ‖Hτ‖∞ (50)

and for all m ≥ 0, ∥∥SJ [PJ,m]Tτ f − SJ [PJ,m] f
∥∥ ≤ Cm ‖ f ‖K(τ) (51)

where PJ,m is a subset of PJ of paths of length strictly smaller than m.

Further, a Windowed Scattering Transform is also Lipschitz continuous under the action
diffeomorphisms over compactly supported functions.

Corollary 3.10. For any compact Ω ⊂ Rd, ∃C such that ∀ f ∈ L2(Rd) in the support of Ω, with∥∥U[PJ ] f
∥∥

1 < ∞ and ∀τ ∈ C2(Rd) with ‖∇τ‖∞ ≤ 1/2, if ‖τ‖∞/‖∇τ‖∞ ≤ 2J , then∥∥SJ [PJ ]Tτ f − SJ [PJ ] f
∥∥ ≤ C

∥∥U[PJ ] f
∥∥

1 (2
−J ‖τ‖∞ + ‖∇τ‖∞ + ‖Hτ‖∞) (52)

Finally, the translation error term, 2−J ‖τ‖∞, in Theorem 3.9 and Corollary 3.10, can be reduced
to a second order term through a first-order Taylor expansion of each SJ [p] f .

Theorem 3.11. There exits C such that ∀ f ∈ L2(Rd) with
∥∥U[PJ ] f

∥∥
1 < ∞ and all τ ∈ C2(Rd) with

‖∇τ‖∞ ≤ 1/2 satisfy∥∥SJ [PJ ]Tτ f − SJ [PJ ] f + τ · ∇SJ [PJ ] f
∥∥ ≤ C

∥∥U[PJ ] f
∥∥

1 K(τ) (53)

with

K(τ) = 2−2J ‖τ‖2
∞ + ‖∇τ‖∞

(
max{log

‖∆τ‖∞
‖∇τ‖∞

, 1}
)
+ ‖Hτ‖∞ , (54)

where τ · ∇SJ [PJ ] f (x) , {τ(x) · ∇SJ [p] f (x)}p∈PJ .

4. Extensions and Conclusion

Several extensions are done on these fundamental definitions and results. In order to formally de-
fine a limit of the Windowed Scattering Transform, which is used to define the Integral Scattering
Transform, a measure and metric is constructed over the path. This also yields the normalization
found in Definition 2.6. Further, the invariant scattering transform is extended to actions of
compact Lie groups, defining a scattering operator on L2(SO(d)). Combining this extension with
results on L2(Rd) allows for the scattering transform to be extended to be translation and rotation
invariant while maintaining Lipschitz continuity. The Windowed Scattering Transform and propa-
gation calculations follow the general architecture of convolution neural networks. Convolution
networks cascade convolutions and a pooling non-linearity, which here is the complex modulus.
However, convolution networks typically use kernels that are not predefined functions such as
wavelets but which are learned with back-propagation algorithms. The scattering transform has
been adapted by Mallat to preform convolution network operations and has been shown to have
significant applications in object representation and recognition.[2] In applications, the decay of

∑∞
n≥m

∥∥∥SJ [Λn
J ] f
∥∥∥2

from Theorem 3.3 implies that all paths of length larger than some m > 0 can
be omitted. This decay has mostly limited m = 3 for classification applications.
In conclusion, the Scattering Transform presents an operator that is non-expansive, norm-
preserving and stable to deformations. These conditions allow for improvements over the Fourier
Transform, particularly in applications of representation and recognition, where small deforma-
tions should not greatly influence the transformed object.
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